97 research outputs found

    Decreased Neuron Density and Increased Glia Density in the Ventromedial Prefrontal Cortex (Brodmann Area 25) in Williams Syndrome.

    Get PDF
    Williams Syndrome (WS) is a neurodevelopmental disorder caused by a deletion of 25⁻28 genes on chromosome 7 and characterized by a specific behavioral phenotype, which includes hypersociability and anxiety. Here, we examined the density of neurons and glia in fourteen human brains in Brodmann area 25 (BA 25), in the ventromedial prefrontal cortex (vmPFC), using a postmortem sample of five adult and two infant WS brains and seven age-, sex- and hemisphere-matched typically developing control (TD) brains. We found decreased neuron density, which reached statistical significance in the supragranular layers, and increased glia density and glia to neuron ratio, which reached statistical significance in both supra- and infragranular layers. Combined with our previous findings in the amygdala, caudate nucleus and frontal pole (BA 10), these results in the vmPFC suggest that abnormalities in frontostriatal and frontoamygdala circuitry may contribute to the anxiety and atypical social behavior observed in WS

    Abnormalities in visual processing lead to hypersociability and evaluation of trust:An ERP study of Williams syndrome

    Get PDF
    Accurate assessment of trustworthiness is fundamental to successful and adaptive social behavior. Initially, people assess trustworthiness from facial appearance alone. These assessments then inform critical approach or avoid decisions. Individuals with Williams syndrome (WS) exhibit a heightened social drive, especially toward strangers. This study investigated the temporal dynamics of facial trustworthiness evaluation in neurotypic adults (TD) and individuals with WS. We examined whether differences in neural activity during trustworthiness evaluation may explain increased approach motivation in WS compared to TD individuals. Event-related potentials were recorded while participants appraised faces previously rated as trustworthy or untrustworthy. TD participants showed increased sensitivity to untrustworthy faces within the first 65–90 ms, indexed by the negative-going rise of the P1 onset (oP1). The amplitude of the oP1 difference to untrustworthy minus trustworthy faces was correlated with lower approachability scores. In contrast, participants with WS showed increased N170 amplitudes to trustworthy faces. The N170 difference to low–high-trust faces was correlated with low approachability in TD and high approachability in WS. The findings suggest that hypersociability associated with WS may arise from abnormalities in the timing and organization of early visual brain activity during trustworthiness evaluation. More generally, the study provides support for the hypothesis that impairments in low-level perceptual processes can have a cascading effect on social cognition.</p

    Hypersociability in Williams Syndrome

    Get PDF
    Studies of abnormal populations provide a rare opportunity for examining relationships between cognition, genotype and brain neurobiology, permitting comparisons across these different levels of analysis. In our studies, we investigate individuals with a rare, genetically based disorder called Williams syndrome (WMS) to draw links among these levels. A critical component of such a cross-domain undertaking is the clear delineation of the phenotype of the disorder in question. Of special interest in this paper is a relatively unexplored unusual social phenotype in WMS that includes an overfriendly and engaging personality. Four studies measuring distinct aspects of hypersocial behavior in WMS are presented, each probing specific aspects in WMS infants, toddlers, school age children, and adults. The abnormal profile of excessively social behavior represents an important component of the phenotype that may distinguish WMS from other developmental disorders. Furthermore, the studies show that the profile is observed across a wide range of ages, and emerges consistently across multiple experimental paradigms. These studies of hypersocial behavior in WMS promise to provide the groundwork for crossdisciplinary analyses of gene–brain–behavior relationships

    Williams syndrome: An exploration of neurocognitive and genetic features.

    Get PDF
    Abstract We report here on signi®cant attempts to forge links between neurodevelopmental disorders, development of speci®c neuropsychological abilities, and the functional establishment of patterns of brain organization. Such research programs are providing converging evidence for the coherence or dissociability of components of cognition (e.g. language, spatial cognition) and will allow development of theoretical explanations for the underlying architecture of human cognition. Williams syndrome involves focal rather than generalized cognitive de®cits, and offers an important opportunity for linking brain ®ndings to speci®c atypical cognitive pro®les. The unusual neurocognitive pro®le of Williams syndrome makes it a compelling model of the pathways between genes and human cognition. It is becoming clear that the syndrome&apos;s unique genomic organization may also make it an important model of human chromosomal evolution and disease. These studies with a speci®c neurodevelopmental disorder that presents a rare dissociation of higher cortical functioning may provide opportunities to explore some of the central issues of cognitive neuroscience that tie cognitive functions to brain organization and ultimately to the human genome.

    Intelligence in Williams Syndrome Is Related to STX1A, Which Encodes a Component of the Presynaptic SNARE Complex

    Get PDF
    Although genetics is the most significant known determinant of human intelligence, specific gene contributions remain largely unknown. To accelerate understanding in this area, we have taken a new approach by studying the relationship between quantitative gene expression and intelligence in a cohort of 65 patients with Williams Syndrome (WS), a neurodevelopmental disorder caused by a 1.5 Mb deletion on chromosome 7q11.23. We find that variation in the transcript levels of the brain gene STX1A correlates significantly with intelligence in WS patients measured by principal component analysis (PCA) of standardized WAIS-R subtests, r  = 0.40 (Pearson correlation, Bonferroni corrected p-value  = 0.007), accounting for 15.6% of the cognitive variation. These results suggest that syntaxin 1A, a neuronal regulator of presynaptic vesicle release, may play a role in WS and be a component of the cellular pathway determining human intelligence

    Effects of age on American Sign Language sentence repetition.

    Get PDF
    The study of deaf users of signed languages, who often experience delays in primary language (L1) acquisition, permits a unique opportunity to examine the effects of aging on the processing of an L1 acquired under delayed or protracted development. A cohort of 107 congenitally deaf adult signers ages 45–85 years who were exposed to American Sign Language (ASL) either in infancy, early childhood, or late childhood were tested using an ASL sentence repetition test. Participants repeated 20 sentences that gradually increased in length and complexity. Logistic mixed-effects regression with the variables of chronological age (CA) and age of acquisition (AoA) was used to assess sentence repetition accuracy. Results showed that CA was a significant predictor, with increased age being associated with decreased likelihood to reproduce a sentence correctly (odds ratio [OR] = 0.56, p = .010). In addition, effects of AoA were observed. Relative to native deaf signers, those who acquired ASL in early childhood were less likely to successfully reproduce a sentence (OR = 0.42, p = .003), as were subjects who learned ASL in late childhood (OR = 0.27, p < .001). These data show that aging affects verbatim recall in deaf users of ASL and that the age of sign language acquisition has a significant and lasting effect on repetition ability, even after decades of sign language use. These data show evidence for life-span continuity of early life effects

    A preliminary study of orbitofrontal activation and hypersociability in Williams Syndrome

    Get PDF
    Individuals with Williams syndrome (WS) demonstrate an abnormally positive social bias. However, the neural substrates of this hypersociability, i.e., positive attribution bias and increased drive toward social interaction, have not fully been elucidated. Methods: We performed an event-related functional magnetic resonance imaging study while individuals with WS and typically developing controls (TD) matched positive and negative emotional faces. WS compared to TD showed reduced right amygdala activation during presentation of negative faces, as in the previous literature. In addition, WS showed a unique pattern of right orbitofrontal cortex activation. While TD showed medial orbitofrontal cortex activation in response to positive, and lateral orbitofrontal cortex activation to negative, WS showed the opposite pattern. In light of the general notion of a medial/lateral gradient of reward/punishment processing in the orbitofrontal cortex, these findings provide an additional biological explanation for, or correlate of positive attribution bias and hypersociability in WS

    Language and sociability: insights from Williams syndrome

    Get PDF
    One of the most compelling features of Williams syndrome (WS) is the widely reported excessive sociability, accompanied by a relative proficiency in expressive language, which stands in stark contrast with significant intellectual and nonverbal impairments. It has been proposed that the unique language skills observed in WS are implicated in the strong drive to interact and communicate with others, which has been widely documented in WS. Nevertheless, this proposition has yet to be empirically examined. The present study aimed at investigating the relationship between a brain index of language processing and judgments of approachability of faces, as a proxy for sociability, in individuals with WS as contrasted to typical controls. Results revealed a significant and substantial association between the two in the WS, but not in the control group, supporting the hitherto untested notion that language use in WS might be uniquely related to their excessive social drive

    Affiliative behavior in Williams syndrome: Social perception and real-life social behavior

    Get PDF
    A frequently noted but largely anecdotal behavioral observation in Williams syndrome (WS) is an increased tendency to approach strangers, yet the basis for this behavior remains unknown. We examined the relationship between affect identification ability and affiliative behavior in participants with WS relative to a neurotypical comparison group. We quantified social behavior from self-judgments of approachability for faces, and from parent/other evaluations of real life. Relative to typical individuals, participants with WS were perceived as more sociable by others, exhibited perceptual deficits in affect identification, and judged faces of strangers as more approachable. In WS, high self-rated willingness to approach strangers was correlated with poor affect identification ability, suggesting that these two findings may be causally related. We suggest that the real-life hypersociability in WS may arise at least in part from abnormal perceptual processing of other people's faces, rather than from an overall bias at the level of behavior. While this did not achieve statistical significance, it provides preliminary evidence to suggest that impaired social-perceptual ability may play a role in increased approachability in WS
    corecore